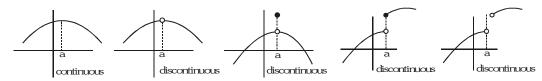
CONTINUITY

1. CONTINUOUS FUNCTIONS:

A function for which a small change in the independent variable causes only a small change and not a sudden jump in the dependent variable are called continuous functions. Naively, we may say that a function is continuous at a fixed point if we can draw the graph of the function around that point without lifting the pen from the plane of the paper.



Continuity of a function at a point :

A function f(x) is said to be continuous at x = a, if $\lim_{x \to a} f(x) = f(a)$. Symbolically f(x) = a if

$$\underset{h\to 0}{\text{Lim}}\; f(a-h) = \underset{h\to 0}{\text{Lim}}\; f(a+h) = f\big(a\big)\,,\;\; h\; \geq \; 0$$

i.e. $(LHL_{x=a} = RHL_{x=a})$ equals value of 'f' at x=a. It should be noted that continuity of a function at x=a can be discussed only if the function is defined in the immediate neighbourhood of x=a, not necessarily at x=a.

Ex. Continuity at x = 0 for the curve can not be discussed.

Illustration 1: If $f(x) = \begin{cases} \sin \frac{\pi x}{2}, & x < 1 \\ [x] & x \ge 1 \end{cases}$ then find whether f(x) is continuous or not at x = 1, where [] denotes

greatest integer function. $\begin{array}{ccc}
\pi x
\end{array}$

Solution: $f(x) = \begin{cases} \sin \frac{\pi x}{2}, & x < 1 \\ [x], & x \ge 1 \end{cases}$

For continuity at x = 1, we determine, f(1), $\lim_{x \to 1^{-}} f(x)$ and $\lim_{x \to 1^{+}} f(x)$.

Now, f(1) = [1] = 1

 $\lim_{x \to 1^{^-}} f(x) = \lim_{x \to 1^{^-}} \sin \ \frac{\pi x}{2} = \sin \frac{\pi}{2} = 1 \ \text{ and } \ \lim_{x \to 1^{^+}} f(x) = \lim_{x \to 1^{^+}} [x] = 1$

so $f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$

 \therefore f(x) is continuous at x = 1

Illustration 2: Consider $f(x) = \begin{cases} \frac{8^x - 4^x - 2^x + 1}{x^2}, & x > 0 \\ e^x \sin x + \pi x + k \ell n 4, & x < 0 \end{cases}$ Define the function at x = 0 if possible, so that f(x)

becomes continuous at x = 0.

Solution: $f(0^{+}) = \lim_{h \to 0} \frac{8^{h} - 4^{h} - 2^{h} + 1}{h^{2}} = \lim_{h \to 0} \frac{4^{h}(2^{h} - 1) - (2^{h} - 1)}{h^{2}}$ $= \lim_{h \to 0} \frac{(4^{h} - 1)}{h} \frac{(2^{h} - 1)}{h} = \ln 4 \cdot \ln 2$

$$f(0^{-}) = \lim_{x \to 0^{-}} \left(e^{x} \sin x + \pi x + k \ell n 4 \right) = k \ell n 4$$

$$f(x) \text{ is continuous at } x = 0,$$

 $\Rightarrow \quad f(0^{\scriptscriptstyle +}) = f(0^{\scriptscriptstyle -}) = f(0) \quad \Rightarrow \quad \ell_n 4.\ell_n 2 = k\ell_n 4 \quad \Rightarrow \quad k = \ell_n 2 \quad \Rightarrow f(0) = (\ell_n 4)(\ell_n 2)$

If f is continuous at x = 0, then find out the values of a, b, c and d.

Solution: Since f(x) is continuous at x = 0, so at x = 0, both left and right limits must exist and both must be equal to 3.

$$\lim_{x \to 0^{-}} \frac{a(1 - x \sin x) + b \cos x + 5}{x^{2}} = \lim_{x \to 0^{-}} \frac{(a + b + 5) + \left(-a - \frac{b}{2}\right)x^{2} + ...}{x^{2}} = 3 \text{ (By the expansions of sinx and cosx)}$$

If $\lim_{x\to 0^-} f(x)$ exists then a+b+5=0 and $-a-\frac{b}{2}=3 \implies a=-1$ and b=-4

$$\text{since } \lim_{x \to 0^+} \left(1 + \left(\frac{cx + dx^3}{x^2} \right) \right)^{\frac{1}{x}} \text{ exists } \Rightarrow \lim_{x \to 0^+} \frac{cx + dx^3}{x^2} = 0 \Rightarrow c = 0$$

Now
$$\lim_{x \to 0^{+}} (1 + dx)^{\frac{1}{x}} = \lim_{x \to 0^{+}} \left[(1 + dx)^{\frac{1}{dx}} \right]^{d} = e^{d}$$

So $e^{d} = 3 \implies d = \ln 3$.

Hence a = -1, b = -4, c = 0 and d = ln 3.

Do yourself -1:

(i) If
$$f(x) = \begin{cases} \cos x; x \ge 0 \\ x + k; x < 0 \end{cases}$$
 find the value of k if $f(x)$ is continuous at $x = 0$.

(ii) If
$$f(x) = \begin{cases} \frac{|x+2|}{\tan^{-1}(x+2)} & ; & x \neq -2 \\ 2 & ; & x = -2 \end{cases}$$
 then discuss the continuity of $f(x)$ at $x=-2$

2. CONTINUITY OF THE FUNCTION IN AN INTERVAL:

- (a) A function is said to be continuous in (a,b) if f is continuous at each & every point belonging to (a, b).
- (b) A function is said to be continuous in a closed interval [a,b] if :
 - (i) f is continuous in the open interval (a,b)
 - (ii) f is right continuous at 'a' i.e. $\lim_{x\to a^+} f(x) = f(a) = a$ finite quantity
 - (iii) f is left continuous at 'b' i.e. $\lim_{x\to b^-} f(x) = f(b) = a$ finite quantity

Note:

(i) Obseve that $\lim_{x\to a^-} f(x)$ and $\lim_{x\to b^+} f(x)$ do not make sense. As a consequence of this definition, if f(x) is defined only at one point, it is continuous there, i.e., if the domain of f(x) is a singleton, f(x) is a continuous function.

Example: Consider $f(x) = \sqrt{a-x} + \sqrt{x-a}$. f(x) is a singleton function defined only at x = a. Hence f(x) is a continuous function.

- (ii) All polynomials, trigonometrical functions, exponential & logarithmic functions are continuous in their domains.
- (iii) If f(x) & g(x) are two functions that are continuous at x = c then the function defined by :

 $F_1(x) = f(x) \pm g(x)$; $F_2(x) = K f(x)$, where K is any real number; $F_3(x) = f(x) \cdot g(x)$ are also continuous at x = c.

Further, if g(c) is not zero, then $F_4(x) = \frac{f(x)}{g(x)}$ is also continuous at x = c.

(iii) Some continuous functions :

Function f(x)	Interval in which f(x) is continuous
Constant function	$(-\infty, \infty)$
x^n , n is an integer ≥ 0	$(-\infty, \infty)$
x^{-n} , n is a positive integer	$(-\infty,\infty)-\{0\}$
x - a	$(-\infty,\infty)$
$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	$(-\infty,\infty)$
$\frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomial in x	$(-\infty, \infty) - \{x : q(x) = 0\}$
sinx, cosx, e ^x	$(-\infty, \infty)$
tanx, secx	$(-\infty, \infty) - \{(2n + 1)\pi/2 : n \in I\}$
cotx, cosecx	$(-\infty, \infty) - \{n\pi : n \in I\}$
ℓ nx	(0, ∞)

(iv) Some Discontinuous Functions :

Functions	Points of discontinuity					
[x], {x}	Every Integer					
tanx, secx	$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$					
cotx, cosecx	$x=0\;,\pm\;\pi\;,\pm\;2\;\pi\;,\ldots.$					
$\sin \frac{1}{x} , \cos \frac{1}{x} , \frac{1}{x} , e^{1/x}$	x = 0					

$$\textit{Illustration 4} : \text{ Discuss the continuity of } f(x) = \begin{cases} \begin{vmatrix} x+1 \end{vmatrix} &, & x<-2 \\ 2x+3 &, & -2 \leq x<0 \\ x^2+3 &, & 0 \leq x<3 \\ x^3-15 &, & x \geq 3 \end{cases}$$

Solution: We write f(x) as f(x) =
$$\begin{cases} -x - 1 & , & x < -2 \\ 2x + 3 & , & -2 \le x < 0 \\ x^2 + 3 & , & 0 \le x < 3 \\ x^3 - 15 & , & x \ge 3 \end{cases}$$

As we can see, f(x) is defined as a polynomial function in each of intervals $(-\infty, -2)$, (-2,0), (0,3) and $(3,\infty)$. Therefore, it is continuous in each of these four open intervals. Thus we check the continuity at x = -2,0,3.

At the point x = -2

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} (-x - 1) = +2 - 1 = 1$$

$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (2x + 3) = 2. (-2) + 3 = -1$$

Therefore, $\lim_{x \to 0} f(x)$ does not exist and hence f(x) is discontinuous at x = -2.

At the point x = 0

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (2x + 3) = 3$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x^2 + 3) = 3$$

$$f(0) = 0^2 + 3 = 3$$

Therefore f(x) is continuous at x = 0.

At the point x = 3

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (x^{2} + 3) = 3^{2} + 3 = 12$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x^3 - 15) = 3^3 - 15 = 12$$

$$f(3) = 3^3 - 15 = 12$$

Therefore, f(x) is continuous at x = 3.

We find that f(x) is continuous at all points in R except at x = -2

Do yourself -2:

(i) If
$$f(x) = \begin{cases} \frac{x^2}{a} & \text{; } 0 \le x < 1 \\ -1 & \text{; } 1 \le x < \sqrt{2} \text{ then find the value of a & b if } f(x) \text{ is continuous in } [0,\infty) \\ \frac{2b^2 - 4b}{x^2} & \text{; } \sqrt{2} \le x < \infty \end{cases}$$

(ii) Discuss the continuity of
$$f(x) = \begin{cases} |x-3| & ; \quad 0 \le x < 1 \\ \sin x & ; \quad 1 \le x \le \frac{\pi}{2} & \text{in } [0,3) \\ \log_{\frac{\pi}{2}} x & ; \quad \frac{\pi}{2} < x < 3 \end{cases}$$

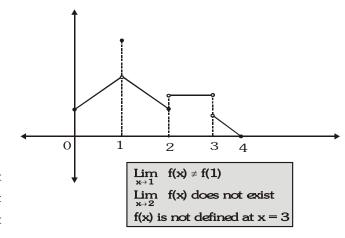
3. REASONS OF DISCONTINUITY:

(a) Limit does not exist

i.e.
$$\lim_{x\to a^{-}} f(x) \neq \lim_{x\to a^{+}} f(x)$$

- (b) f(x) is not defined at x = a
- (c) $\lim_{x\to a} f(x) \neq f(a)$

Geometrically, the graph of the function will exhibit a break at x = a, if the function is discontinuous at x = a. The graph as shown is discontinuous at x = 1, 2 and 3.



4. TYPES OF DISCONTINUITIES:

Type-1: (Removable type of discontinuities): - In case Lim f(x) exists but is not equal to f(a) then the function is said to have a removable discontinuity or discontinuity of the first kind. In this case we can redefine the function such that Lim f(x) = f(a) & make it continuous at x = a. Removable type of discontinuity can be further classified as:

(a) Missing point discontinuity:

Where $\lim_{x \to a} f(x)$ exists but f(a) is not defined.

(b) Isolated point discontinuity:

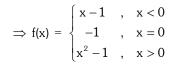
Where $\lim_{x \to a} f(x)$ exists & f(a) also exists but; $\lim_{x \to a} f(x) \neq f(a)$.

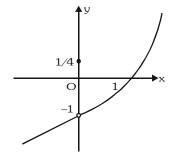
the discontinuity by redefining the function (if possible).

Graph of f(x) is shown, from graph it is seen that Solution :

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = -1 \text{ , but } f(0) = 1/4$$

Thus, f(x) has removable discontinuity and f(x) could be made continuous by taking f(0) = -1





y = f(x) before redefining

Do yourself -3:

(i) If
$$f(x) = \begin{cases} \frac{1}{x-1} & ; & 0 \le x < 2 \\ x^2 - 3 & ; & 2 \le x < 4 \\ 5 & ; & x = 4 \end{cases}$$
, then discuss the types of discontinuity for the function.
$$14 - \frac{x^{1/2}}{2} ; & x > 4$$

Type-2: (Non-Removable type of discontinuities):

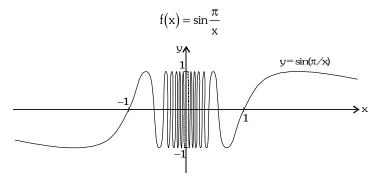
In case Lim f(x) does not exist then it is not possible to make the function continuous by redefining it. Such a

discontinuity is known as non-removable discontinuity or discontinuity of the 2nd kind. Non-removable type of discontinuity can be further classified as :

- Tinite type discontinuity: In such type of discontinuity at least one of the limit viz. LHL and RHL is tending to infinity. (i)
- (ii)

(iii) Oscillatory type discontinuity:

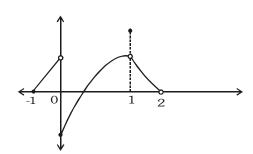
e.g.
$$f(x) = \sin \frac{\pi}{x}$$
 at $x = 0$



f(x) has non removable oscillatory type discontinuity at x = 0

Example: From the adjacent graph note that

- (i) f is continuous at x = -1
- (ii) f has isolated discontinuity at x = 1
- (iii) f has missing point discontinuity at x = 2
- (iv) f has non removable (finite type) discontinuity at the origin.



Note: In case of non-removable (finite type) discontinuity the non-negative difference between the value of the RHL at x = a & LHL at x = a is called **the jump of discontinuity**. A function having a finite number of jumps in a given interval I is called a **piece wise continuous or sectionally continuous** function in this interval.

Illustration 6: Show that the function, $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1} & ; \text{ when } x \neq 0 \\ 0, & ; \text{ when } x = 0 \end{cases}$ has non-removable discontinuity at

$$\Rightarrow \lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \frac{e^{\frac{1}{h}} - 1}{e^{\frac{1}{h}} + 1} = \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} = 1 \qquad [\because e^{1/h} \to \infty]$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \frac{0 - 1}{0 + 1} = -1$$

$$\lim_{x \to 0^{-}} f(x) = -1$$
[: h \to 0; e^{-1/h} \to 0]

 $\Rightarrow \lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^-} f(x)$. Thus f(x) has non-removable discontinuity.

 $\{\ \}$ denotes fractional part function.

$$f(x) = \begin{cases} \cos^{-1} \{\cot x\} & x < \frac{\pi}{2} \\ \pi[x] - 1 & x \ge \frac{\pi}{2} \end{cases}$$

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \ \cos^{-1} \ \{\cot \ x\} = \lim_{h \to 0} \cos^{-1} \left\{\cot \left(\frac{\pi}{2} - h\right)\right\} = \lim_{h \to 0} \cos^{-1} \left\{\tanh\right\} = \frac{\pi}{2}$$

$$= \lim_{x \to \frac{\pi^+}{2}} \!\! f(x) = \lim_{x \to \frac{\pi^+}{2}} \!\! \pi[x] - 1 = \lim_{h \to 0} \pi \Bigg[\frac{\pi}{2} + h \, \Bigg] - 1 = \pi - 1$$

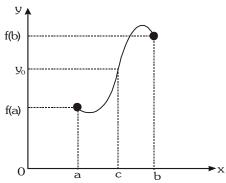
 $\therefore \quad \text{jump of discontinuity} = \pi - 1 - \frac{\pi}{2} = \frac{\pi}{2} - 1$

Do yourself -4:

Discuss the type of discontinuity for $f(x) = \begin{cases} -1 & ; & x \le -1 \\ |x| & ; & -1 < x < 1 \\ (x+1) & ; & x \ge 1 \end{cases}$

5. THE INTERMEDIATE VALUE THEOREM:

Suppose f(x) is continuous on an interval I. and a and b are any two points of I. Then if y_0 is a number between f(a) and f(b), there exists a number c between a and b such that $f(c) = y_0$



The function f, being continuous on [a,b] takes on every value between f(a) and f(b)

Note that a function f which is continuous in [a,b] possesses the following properties:

- (i)
- (ii)

Note: In above cases the number of roots is always odd.

Illustration 8: Show that the function, $f(x) = (x - a)^2(x - b)^2 + x$, takes the value $\frac{a+b}{2}$ for some $x_0 \in (a, b)$

Solution :

$$f(x) = (x - a)^2(x - b)^2 + x$$

$$I(a) - a$$

$$f(b) = b$$

&
$$\frac{a+b}{2} \in (f(a), f(b))$$

function f which is continuous in [a,b] possesses the following properties:

If f(a) & f(b) posses opposite signs, then there exists at least one root of the equation f(x) = 0 in the open interval (a,b).

If K is any real number between f(a) & f(b), then there exists at least one root of the equation f(x) = K in the open interval (a,b).

Show that the function, $f(x) = (x - a)^2(x - b)^2 + x$, takes the value $\frac{a+b}{2}$ for some $x_0 \in (a,b)$ f(x) = $(x - a)^2(x - b)^2 + x$ f(a) = a f(b) = b& $\frac{a+b}{2} \in (f(a), f(b))$ \therefore By intermediate value theorem, there is at least one $x_0 \in (a,b)$ such that $f(x_0) = \frac{a+b}{2}$.

Let $f: [0, 1] \xrightarrow{\text{onto}} [0, 1]$ be a continuous function, then prove that f(x) = x for at least one $x \in [0, 1]$ **Illustration** 9: Let $f:[0, 1] \xrightarrow{\text{onto}} [0, 1]$ be a continuous function, then prove that f(x) = x for at least one

Solution: Consider g(x) = f(x) - x

$$g(0) = f(0) - 0 = f(0) \ge 0$$

 $\{ :: \quad 0 \le f(x) \le 1 \}$

$$g(1) = f(1) - 1 \le 0$$

$$\Rightarrow$$
 g(0) . g(1) \leq 0

$$\Rightarrow$$
 g(x) = 0 has at least one root in [0, 1]

$$\Rightarrow$$
 f(x) = x for at least one x \in [0, 1]

Do yourself -5:

(i) If
$$f(x)$$
 is continuous in [a,b] such that $f(c) = \frac{2f(a) + 3f(b)}{5}$, then prove that $c \in (a,b)$

6. SOME IMPORTANT POINTS:

(a) If f(x) is continuous & g(x) is discontinuous at x = a then the product function $\phi(x) = f(x) \cdot g(x)$ will not necessarily be discontinuous at x = a, e.g.

$$f(x) = x \& g(x) = \begin{bmatrix} \sin \frac{\pi}{x} & x \neq 0 \\ 0 & x = 0 \end{bmatrix}$$

f(x) is continuous at x = 0 & g(x) is discontinuous at x = 0, but f(x).g(x) is continuous at x = 0.

(b) If f(x) and g(x) both are discontinuous at x = a then the product function $\phi(x) = f(x) \cdot g(x)$ is not necessarily be discontinuous at x = a, e.g.

$$f(x) = -g(x) = \begin{bmatrix} 1 & x \ge 0 \\ -1 & x < 0 \end{bmatrix}$$

f(x) & g(x) both are discontinuous at x = 0 but the product function f.g(x) is still continuous at x = 0

(c) If f(x) and g(x) both are discontinuous at x = a then $f(x) \pm g(x)$ is not necessarily be discontinuous at x = a

(d) A continuous function whose domain is closed must have a range also in closed interval.

(e) If f is continuous at x = a & g is continuous at x = f (a) then the composite g[f(x)] is continuous at x = a. eg.

$$f(x) = \frac{x \sin x}{x^2 + 2} \& g(x) = |x| \text{ are continuous at } x = 0, \text{ hence the composite } (gof)(x) = \left|\frac{x \sin x}{x^2 + 2}\right| \text{ will also be continuous at } x = 0$$

Illustration 10: If $f(x) = \frac{x+1}{x-1}$ and $g(x) = \frac{1}{x-2}$, then discuss the continuity of f(x), g(x) and fog f(x) in f(x).

Solution: $f(x) = \frac{x+1}{x-1}$

f(x) is a rational function it must be continuous in its domain and f is not defined at x = 1.

 \therefore f is discontinuous at x = 1

$$g(x) = \frac{1}{x-2}$$

g(x) is also a rational function. It must be continuous in its domain and g is not defined at x = 2.

 \therefore g is discontinuous at x = 2

Now fog(x) will be discontinuous at x = 2 (point of discontinuity of g(x))

Consider g(x) = 1 (when g(x) = point of discontinuity of <math>f(x))

$$\frac{1}{x-2} = 1 \quad \Rightarrow \quad x = 3$$

 \therefore fog(x) is discontinuous at x = 2 & x = 3.

Do yourself -6:

(i) Let f(x) = [x] & g(x) = sgn(x) (where [.] denotes greatest integer function), then discuss the continuity of

$$f(x) \pm g(x), f(x).g(x) & \frac{f(x)}{g(x)} \text{ at } x=0.$$

(ii) If $f(x) = \sin|x| \& g(x) = \tan|x|$ then discuss the continuity of $f(x) \pm g(x)$; $\frac{f(x)}{g(x)} \& f(x)$

7. SINGLE POINT CONTINUITY:

Functions which are continuous only at one point are said to exhibit single point continuity

Illustration 11: If $f(x) = \begin{bmatrix} x & \text{if } x \in Q \\ -x & \text{if } x \notin Q \end{bmatrix}$, find the points where f(x) is continuous

Solution: Let x = a be the point at which f(x) is continuous.

$$\Rightarrow \lim_{\substack{x \to a \\ \text{through rational}}} f(x) = \lim_{\substack{x \to a \\ \text{through irrational}}} f(x)$$

$$\Rightarrow$$
 a = -a

$$\Rightarrow$$
 a = 0 \Rightarrow function is continuous at x = 0.

Do yourself -7:

- (i) If $g(x) = \begin{bmatrix} x & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{bmatrix}$, then find the points where function is continuous.
- (ii) If $f(x) = \begin{cases} x^2 & ; x \in Q \\ 1 x^2 & ; x \notin Q \end{cases}$, then find the points where function is continuous.

ANSWERS FOR DO YOURSELF

1. (i) 1

- (ii) discontinuous at x = -2
- **2.** (i) a=-1 & b=1
- (ii) Discontinuous at x = 1 & continuous at $x = \frac{\pi}{2}$
- 3. (i) Missing point removable discontinuity at x = 1, isolated point removable discontinuity at x = 4.
- **4.** (i) Finite type non-removable discontinuity at x=-1,1
- **6.** (i) All are discontinuous at x = 0.
 - (ii) $f(x) g(x) & f(x) \pm g(x)$ are discontinuous at $x = (2n+1)\frac{\pi}{2}$; $n \in I$

$$\frac{f(x)}{g(x)}$$
 is discontinuous at $x = \frac{n\pi}{2}$; $n \in I$

7. (i)
$$x = 0$$

(ii)
$$x = \pm \frac{1}{\sqrt{2}}$$

EXERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. If $f(x) = \begin{cases} x+2 & \text{, when } x < 1 \\ 4x-1 & \text{, when } 1 \le x \le 3 \\ x^2+5 & \text{, when } x > 3 \end{cases}$, then correct statement is -

(A) $\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x)$

(B) f(x) is continuous at x = 3

(C) f(x) is continuous at x = 1

(D) f(x) is continuous at x = 1 and 3

 $\label{eq:2.2} \textbf{2.} \qquad \text{If} \ \ f\left(x\right) = \begin{cases} \dfrac{1}{e^{1/x} + 1} &, \quad x \neq 0 \\ 0 &, \quad x = 0 \end{cases}, \ \text{then -}$

(A) $\lim_{x \to 0+} f(x) = 1$

(B) $\lim_{x \to 0^{-}} f(x) = 0$

(C) f(x) is discontinuous at x = 0

(D) f(x) is continuous

3. If function $f(x) = \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}$, is continuous function, then f(0) is equal to -

(A) 2

- (B) 1/4
- (C) 1/6
- (D) 1/3

4. If $f(x) = \begin{cases} \frac{x^2 - (a+2)x + 2a}{x-2} &, & x \neq 2 \\ 2 &, & x = 2 \end{cases}$ is continuous at x = 2, then a is equal to -

(A) 0

(B) 1

- (C) -1
- (D) 2

 $\textbf{5.} \qquad \text{If } f(x) \, = \, \begin{cases} \frac{\log(1+2\alpha x) - \log(1-bx)}{x} & , & x \neq 0 \\ k & , & x = 0 \end{cases} \text{, is continuous at } x \, = \, 0 \text{ , then } k \text{ is equal to } -1 \text{ and } k \text$

- (A) 2a + b
- (B) 2a b
- (C) b 2a
- (D) a + b

 $\textbf{6.} \qquad \text{If } f(x) = \begin{cases} [x] + [-x], & x \neq 2 \\ \lambda, & x = 2 \end{cases}, \quad \text{f is continuous at} \quad x = 2 \text{ then } \lambda \text{ is (where [.] denotes greatest integer) -} \end{cases}$

(A) -1

(B) 0

(C) 1

(D) 2

If $f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} & , & x < 0 \\ a & , & x = 0 , \text{ then correct statement is } -\frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4} & , & x > 0 \end{cases}$

- (A) f(x) is discontinuous at x = 0 for any value of a
- (B) f(x) is continuous at x = 0 when a = 8
- (C) f(x) is continuous at x = 0 when a = 0
- (D) none of these

- Function $f(x) = \frac{1}{\log |x|}$ is discontinuous at -8.
 - (A) one point
- (B) two points
- (C) three points
- (D) infinite number of points
- Which of the following functions has finite number of points of discontinuity in R (where [.] denotes greatest 9. integer)
 - (A) tan x
- (B) |x| / x
- (C) x + [x]
- (D) $\sin [\pi x]$
- $\textbf{10.} \quad \text{If } f(x) \, = \, \frac{1-\tan x}{4\,x\,-\,\pi}, \, x \neq \frac{\pi}{4}, \ \, x \in \left[\,0,\frac{\pi}{2}\right) \ \, \text{is a continuous functions, then } f(\pi/4) \, \, \text{is equal to} \, \, -\, \frac{\pi}{4} + \frac{\pi}{$
 - (A) -1/2
- (C) 1

- (D) -1
- The value of f(0), so that function, $f(x) = \frac{\sqrt{a^2 ax + x^2} \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} \sqrt{a x}}$ becomes continuous for all x, is given
 - by -
 - (A) $a\sqrt{a}$
- (B) $-\sqrt{a}$
- (C) \sqrt{a}
- (D) $-a\sqrt{a}$
- $\textbf{12.} \quad \text{If } f(x) = \frac{x e^x + \cos 2x}{x^2} \; , \; x \neq 0 \; \text{is continuous at } x = 0, \; \text{then -}$
 - (A) $f(0) = \frac{5}{9}$

- (B) [f(0)] = -2 (C) $\{f(0)\} = -0.5$ (D) $[f(0)].\{f(0)\} = -1.5$

where [x] and {x} denotes greatest integer and fractional part function.

- 13. Let $f(x) = \frac{x(1+a\cos x)-b\sin x}{x^3}$, $x \ne 0$ and f(0) = 1. The value of a and b so that f is a continuous function are-
- (B) 5/2, -3/2 (C) -5/2, -3/2
- 'f' is a continuous function on the real line. Given that $x^2 + (f(x) 2)x \sqrt{3} \cdot f(x) + 2\sqrt{3} 3 = 0$. Then the value of $f(\sqrt{3})$ is -
 - (A) $\frac{2(\sqrt{3}-2)}{\sqrt{2}}$
- (B) $2(1-\sqrt{3})$
- (C) zero
- (D) cannot be determined

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- The value(s) of x for which $f(x) = \frac{e^{\sin x}}{4 \sqrt{x^2 9}}$ is continuous, is (are) -

- **16.** Which of the following function(s) not defined at x = 0 has/have removable discontinuity at the origin?
 - (A) $f(x) = \frac{1}{1 + 2^{\cot x}}$

(B) $f(x) = \cos\left(\frac{|\sin x|}{x}\right)$

(C) $f(x) = x \sin \frac{\pi}{x}$

(D) $f(x) = \frac{1}{\ell n |x|}$

17. Function whose jump (non-negative difference of LHL & RHL) of discontinuity is greater than or equal to one, is/are -

(A)
$$f(x) = \begin{cases} \frac{(e^{1/x} + 1)}{(e^{1/x} - 1)} ; & x < 0 \\ \frac{(1 - \cos x)}{x} ; & x > 0 \end{cases}$$

(B)
$$g(x) = \begin{cases} \frac{x^{1/3} - 1}{x^{1/2} - 1} ; & x > 1 \\ \frac{\ln x}{(x - 1)} ; & \frac{1}{2} < x < 1 \end{cases}$$

(C)
$$u(x) = \begin{cases} \frac{\sin^{-1} 2x}{\tan^{-1} 3x} & ; & x \in \left[0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x} & ; & x < 0 \end{cases}$$

(D)
$$v(x) = \begin{cases} log_3(x+2) & ; x > 2 \\ log_{1/2}(x^2+5) & ; x < 2 \end{cases}$$

- **18.** If $f(x) = \frac{1}{x^2 17x + 66}$, then $f\left(\frac{2}{x 2}\right)$ is discontinuous at x = 1
 - (A) 2

(B) $\frac{7}{3}$

(C) $\frac{24}{11}$

- (D) 6,11
- **19.** Let $f(x) = [x] \& g(x) = \begin{cases} 0; & x \in \mathbb{Z} \\ x^2; & x \in \mathbb{R} \mathbb{Z} \end{cases}$, then (where [.] denotes greatest integer function) -
 - (A) $\lim_{x\to 1} g(x)$ exists, but g(x) is not continuous at x=1.
 - (B) $\lim_{x\to 1} f(x)$ does not exist and f(x) is not continuous at x=1.
 - (C) gof is continuous for all x.
 - (D) fog is continuous for all x.

0
Ŏ.
2
9
ď
_
/
#0#
#
\neg
~
Maths
-
₽
ŝ
>
bec
Ē
>
P
ù
ш
2
ō
,0
ž
4
0
Ö
6
6
Ó
·
Щ
Ý

СНЕСК	YOUR GR	RASP		A	ANSWER KEY					ERCISE-1
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	С	С	Α	Α	Α	В	С	В	Α
Que.	11	12	13	14	15	16	18	18	19	
Ans.	В	D	С	В	A,B	B,C,D	A,C,D	A,B,C	A,B,C	

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- Consider the piecewise defined function f(x) = 0if $0 \le x \le 4$ choose the answer which best describes 1. the continuity of this function -
 - (A) the function is unbounded and therefore cannot be continuous
 - (B) the function is right continuous at x = 0
 - (C) the function has a removable discontinuity at 0 and 4, but is continuous on the rest of the real line
 - (D) the function is continuous on the entire real line
- 2. f(x) is continuous at x=0, then which of the following are always true?
 - (A) $\lim_{x \to 0} f(x) = 0$

- (B) f(x) is non continuous at x=1
- (C) $g(x) = x^2 f(x)$ is continuous at x = 0
- (D) $\lim_{x \to 0^{+}} (f(x) f(0)) = 0$
- Indicate all correct alternatives if, $f(x) = \frac{x}{2} 1$, then on the interval $[0,\pi]$ 3.

 - (A) $\tan (f(x)) \& \frac{1}{f(x)}$ are both continuous (B) $\tan (f(x)) \& \frac{1}{f(x)}$ are both discontinuous
 - (C) tan (f(x))& $f^{-1}(x)$ are both continuous
- (D) tan (f(x)) is continuous but $\frac{1}{f(x)}$
- If f(x) = sgn(cos2x 2 sinx + 3), where sgn () is the signum function, then f(x) -4.
 - (A) is continuous over its domain

- (B) has a missing point discontinuity
- (C) has isolated point discontinuity
- (D) has irremovable discontinuity.
- $f(x) = \frac{2\cos x \sin 2x}{(\pi 2x)^2}; \ g(x) = \frac{e^{-\cos x} 1}{8x 4\pi}$ 5.

$$h(x) = f(x) \text{ for } x < \pi/2$$

= g(x) for x>\pi/2

then which of the followings does not holds?

(A) h is continuous at $x = \pi/2$

- (B) h has an irremovable discontinuity at $x=\pi/2$
- (C) h has a removable discontinuity at $x = \pi/2$
- (D) $f\left(\frac{\pi^+}{2}\right) = g\left(\frac{\pi^-}{2}\right)$
- 6. The number of points where $f(x) = [\sin x + \cos x]$ (where [] denotes the greatest integer function), $x \in (0, 2\pi)$ is not continuous is -
 - (A) 3

(B) 4

- (D) 6
- On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x+1)e^{-\left[\frac{1}{|x|} + \frac{1}{x}\right]} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$ 7.

then which one of the following hold good?

- (A) is continuous for all values of $x \in I$
- (B) is continuous for $x \in I (0)$
- (C) assumes all intermediate values from f(-2) & f(2) (D) has a maximum value equal to 3/e
- If $f(x) = \cos\left[\frac{\pi}{x}\right] \cos\left(\frac{\pi}{2}(x-1)\right)$; where [x] is the greatest integer function of x, then f(x) is continuous at -
 - $(A) \quad x = 0$
- (B) x = 1
- (C) x = 2

(D) none of these

$$\textbf{9.} \qquad \text{Given} \quad f(x) = \begin{bmatrix} 3 - \left\lfloor \cot^{-1}\left(\frac{2x^3 - 3}{x^2}\right) \right\rfloor & \text{for} & x > 0 \\ \left\{ x^2 \right\} \cos\left(e^{1/x}\right) & \text{for} & x < 0 \end{bmatrix} \quad \text{where } \{\ \} \ \& \ [\] \ \text{denotes the fractional part and the integral part and the in$$

functions respectively, then which of the following statement does not hold good -

(A) $f(0^-) = 0$

- (B) $f(0^+)=3$
- (C) $f(0)=0 \Rightarrow$ continuity of f at x = 0
- (D) irremovable discontinuity of f at x = 0
- Let 'f' be a continuous function on R. If $f(1/4^n) = (\sin e^n)e^{-n^2} + \frac{n^2}{n^2 + 1}$ then f(0) is -10.
 - (A) not unique

- (C) data sufficient to find f(0)
- (D) data insufficient to find f(0)
- **11.** Given $f(x) = b([x]^2 + [x]) + 1$ for $x \ge -1$

=
$$\sin (\pi(x+a))$$
 for $x < -1$

where [x] denotes the integral part of x, then for what values of a, b the function is continuous at x = -1?

- (A) a = 2n + (3/2); $b \in \mathbb{R}$; $n \in \mathbb{I}$
- (B) a = 4n + 2 ; $b \in R$; $n \in I$
- $\text{(C)} \quad a = 4n + (3/2) \quad ; \quad b \in R^+ \quad ; \quad n \in I \\ \qquad \qquad \text{(D)} \quad a = 4n + 1 \quad ; \quad b \in R^+ \quad ; \quad n \in I$

$$\mathbf{12.} \quad \text{Consider} \quad f(\mathbf{x}) = \begin{bmatrix} -\mathbf{x}[\mathbf{x}]^2 \log_{1+\mathbf{x}} 2 & \text{for} & -1 < \mathbf{x} < 0 \\ \\ \frac{\ln\left(e^{\mathbf{x}^2} + 2\sqrt{\{\mathbf{x}\}}\right)}{\tan\sqrt{\mathbf{x}}} & \text{for} & 0 < \mathbf{x} < 1 \end{bmatrix} \quad \text{where } [*] \ \& \ \{*\} \text{ are the greatest integer function } \&$$

fractional part function respectively, then -

- (A) $f(0) = ln2 \Rightarrow f$ is continuous at x = 0
- (B) $f(0) = 2 \implies f$ is continuous at x = 0
- (C) $f(0) = e^2 \implies f$ is continuous at x = 0
- (D) f has an irremovable discontinuity at x = 0
- Let $f(x) = \begin{bmatrix} a \sin^{2n} x & \text{for } x \ge 0 \text{ and } n \to \infty \\ b \cos^{2m} x 1 & \text{for } x < 0 \text{ and } m \to \infty \end{bmatrix}$ then -
 - (A) $f(0^-) \neq f(0^+)$

- (D) f is continuous at x = 0
- Consider $f(x) = \lim_{n \to \infty} \frac{x^n \sin x^n}{x^n + \sin x^n}$ for $x > 0, x \ne 1$ f(1)=0 then -
 - (A) f is continuous at x = 1
 - (B) f has a finite discontinuity at x = 1
 - (C) f has an infinite or oscillatory discontinuity at x = 1
 - (D) f has a removable type of discontinuity at x=1

BRAIN	TEASERS			Α	ANSWER KEY				EXE	ERCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	C,D	C,D	С	A,C,D	С	B,C,D	B,C	B,D	B,C
Que.	11	12	13	14						
Ans.	A,C	D	Α	В						

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. $\frac{1}{x+[x]}$ is discontinuous at infinite points. ([]] denotes greatest integer function)
- 2. $\sin|x| + |\sin x|$ is not continuous for all x.
- 3. If f is continuous and g is discontinuous at x = a, then f(x).g(x) is discontinuous at x = a.
- **4.** There exists a continuous onto function $f:[0, 1] \longrightarrow [0, 10]$, but there exists no continuous onto function $g:[0, 1] \longrightarrow (0, 10)$
- 5. If $f(x) = \frac{\tan(\pi/4 x)}{\cos 2x}$ for $x \neq \frac{\pi}{4}$, then the value which can be given to f(x) at $x = \frac{\pi}{4}$ so that the function becomes continuous every where in $(0, \pi/2)$ is 1/4.
- **6.** The function f, defined by $f(x) = \frac{1}{1+2^{\tan x}}$ is continuous for real x.
- 7. $f(x) = \lim_{n \to \infty} \frac{1}{1 + n \sin^2 \pi x}$ is continuous at x = 1.
- 8. If f(x) is continuous in [0, 1] and f(x) = 1 for all rational numbers in [0, 1] then $f\left(\frac{1}{\sqrt{2}}\right) = 1$.

MATCH THE COLUMN

Following questions contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **ONE OR MORE** statement(s) in **Column-II**.

	Column-I	Column-II				
(A)	If $f(x) = \begin{cases} \sin\{x\}; & x < 1 \\ \cos x + a; & x \ge 1 \end{cases}$ where $\{.\}$ denotes	(p)	1			
	the fractional part function, such that $f(x)$ is					
	continuous at x = 1. If $ k = \frac{a}{\sqrt{2} \sin \frac{(4-\pi)}{4}}$					
	then k is					
(B)	If the function $f(x) = \frac{(1-\cos(\sin x))}{x^2}$ is	(q)	0			
	continuous at $x = 0$, then $f(0)$ is					
(C)	$f(x) = \begin{bmatrix} x & , x \in Q \\ 1 - x \; , \; x \not\in Q \end{bmatrix}, \text{ then the values}$	(r)	-1			
	of x at which $f(x)$ is continuous					
(D)	If $f(x) = x + \{-x\} + [x]$, where [x] and $\{x\}$	(s)	$\frac{1}{2}$			
	represents integral and fractional part					
	of x , then the values of x at which $f(x)$					
	is discontinuous					

2.	Column-I	Column-II				
(.	A) If $f(x) = 1/(1-x)$, then the points at which	(p)	$\frac{1}{2}$			
	the function fofof(x) is discontinuous					
(B) $f(u) = \frac{1}{u^2 + u - 2}$, where $u = \frac{1}{x - 1}$.	(q)	0			
	The values of x at which 'f' is discontinuous					
(C) $f(x) = u^2$, where $u = \begin{cases} x - 1, x \ge 0 \\ x + 1, x < 0 \end{cases}$	(r)	2			
	The number of values of x at which					
	'f' is discontinuous					
(D) The number of value of x at which the	(s)	1			
	function $f(x) = \frac{2x^5 - 8x^2 + 11}{x^4 + 4x^3 + 8x^2 + 8x + 4}$ is					
	discontinuous					

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement-I: $f(x) = \sin x + [x]$ is discontinuous at x = 0

Because

Statement-II: If g(x) is continuous & h(x) is discontinuous at x = a, then g(x) + h(x) will necessarily be discontinuous at x = a

(A) A

(B) E

(C) C

(D) D

2. Consider
$$f(x) = \begin{cases} 2\sin(a\cos^{-1}x) & \text{if } x \in (0,1) \\ \sqrt{3} & \text{if } x = 0 \\ ax + b & \text{if } x < 0 \end{cases}$$

Statement-I: If $b = \sqrt{3}$ and $a = \frac{2}{3}$ then f(x) is continuous in $(-\infty, 1)$

Because

Statement-II: If a function is defined on an interval I and limit exist at every point of interval I then function is continuous in I.

(A) A

(B) B

(C) C

(D) D

3. Let
$$f(x) = \begin{cases} \frac{\cos x - e^{-x^2/2}}{x^3} , & x \neq 0 \\ 0 , & x = 0 \end{cases}$$
 then

Statement-I: f(x) is continuous at x = 0.

Because

Statement-II : $\lim_{x\to 0} \frac{\cos x - e^{-x^2/2}}{x^4} = \frac{-1}{12}$.

(A) A

(B) B

(C) C

(D) D

4. Statement-I: The equation $\frac{x^3}{4} - \sin \pi x + 3 = 2\frac{1}{3}$ has at least one solution in [-2, 2]

Because

Statement-II: If $f:[a, b] \to R$ be a function & let 'c' be a number such that f(a) < c < f(b), then there is at least one number $n \in (a, b)$ such that f(n) = c.

(A) A

(B) E

(C) C

- (D) D
- 5. Statement-I: Range of $f(x) = x \left(\frac{e^{2x} e^{-2x}}{e^{2x} + e^{-2x}} \right) + x^2 + x^4$ is not R.

Because

Statement-II: Range of a continuous even function can not be R.

(A) A

(B) B

(C) C

(D) D

6. Let $f(x) = \begin{cases} Ax - B & x \le -1 \\ 2x^2 + 3Ax + B & x \in (-1, 1] \\ 4 & x > 1 \end{cases}$

Statement-I: f(x) is continuous at all x if $A = \frac{3}{4}$, $B = -\frac{1}{4}$.

Because

Statement-II: Polynomial function is always continuous.

(A) A

(B) B

(C) C

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1

If
$$S_n(x) = \frac{x}{x+1} + \frac{x^2}{(x+1)(x^2+1)} + \dots + \frac{x^{2^n}}{(x+1)(x^2+1)\dots(x^{2^n}+1)}$$
 and $x > 1$

$$\lim_{n\to\infty} S_n(x) = \ell$$

$$g(x) = \begin{cases} \frac{\sqrt{ax + b} - 1}{x} &, & x \neq 0 \\ 1 &, & x = 0 \end{cases}$$

$$h: R \to R$$
 $h(x) = x^9 - 6x^8 - 2x^7 + 12x^6 + x^4 - 7x^3 + 6x^2 + x - 7$

On the basis of above information, answer the following questions :

- 1. If g(x) is continuous at x = 0 then a + b is equal to -
 - (A) 0

(B) 1

(C) 2

(D) 3

- 2. If g(x) is continuous at x = 0 then g'(0) is equal to -
 - (A) ℓ

(B) $\frac{h(6)}{2}$

- (C) a 2b
- (D) does not exist

- 3. Identify the incorrect option -
 - (A) h(x) is surjective

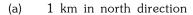
(B) domain of g(x) is $[-1/2, \infty)$

(C) h(x) is bounded

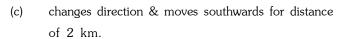
(D) $\ell = 1$

Comprehension # 2

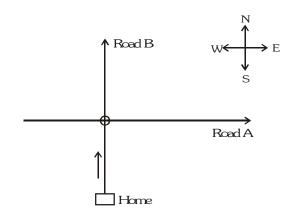
A man leaves his home early in the morning to have a walk. He arrives at a junction of road A & road B as shown in figure. He takes the following steps in later journey:



(b) changes direction & moves in north-east direction for $2\sqrt{2}$ kms.



finally he changes the direction & moves in (d) south-east direction to reach road A again.



Visible/Invisible path: The path traced by the man in the direction parallel to road A & road B is called invisible path, the remaining path traced is visible.

Visible points: The points about which the man changes direction are called visible points except the point from where he changes direction last time

Now if road A & road B are taken as x-axis & y-axis then visible path & visible point represents the graph of y = f(x).

On the basis of above information, answer the following questions :

- 1. The value of x at which the function is discontinuous -
 - (A) 2

(B) 0

(C) 1

(D) 3

- 2. The value of x at which fof(x) is discontinuous -
 - (A) 0

(B) 1

(C) 2

(D) 3

- 3. If f(x) is periodic with period 3, then f(19) is -
 - (A) 2

(B) 3

(C) 19

(D) none of these

MISCELLANEOUS TYPE QUESTION

ANSWER **KEY**

EXERCISE -3

- True / False
 - 3. F T 5. F 6. 7. 8. 4.
- Match the Column

 - **1.** (A) \rightarrow (p, r); (B) \rightarrow (s); (C) \rightarrow (s); (D) \rightarrow (p, q, r) **2.** (A) \rightarrow (q, s); (B) \rightarrow (p, r, s); (C) \rightarrow (q); (D) \rightarrow (q)
- Assertion & Reason
 - **1**. A **2**. C
- **3**. A
- **4**. C
- **5**. A
- **6**. B

- Comprehension Based Questions
 - Comprehension # 1 : 1. D 2. B 3. C Comprehension # 2 : 1. A 2. B,C 3. A

EXERCISE - 4 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

$$\textbf{1.} \qquad \text{If } f(x) = \begin{cases} -x^2, \text{ when } & x \leq 0 \\ 5x - 4, \text{ when } & 0 < x \leq 1 \\ 4x^2 - 3x, \text{ when } & 1 < x < 2 \\ 3x + 4, \text{ when } & x \geq 2 \end{cases}, \text{ discuss the continuity of } f(x) \text{ in } R.$$

$$\mathbf{2.} \qquad \text{Let } f\left(x\right) = \begin{bmatrix} -2\sin x & \text{ for } -\pi \leq x \leq -\frac{\pi}{2} \\ \\ a\sin x + b & \text{ for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \\ \cos x & \text{ for } \frac{\pi}{2} \leq x \leq \pi \\ \end{bmatrix} \text{. If } f \text{ is continuous on } \left[-\pi,\pi\right] \text{ then find the values of a \& b.}$$

$$\textbf{3.} \quad \text{Determine the values of a,b \& c for which the function } f\left(x\right) = \begin{bmatrix} \frac{\sin\left(a+1\right)x + \sin x}{x} & \text{for } x < 0 \\ \\ c & \text{for } x = 0 \\ \\ \frac{\left(x + bx^2\right)^{1/2} - x^{1/2}}{bx^{3/2}} & \text{for } x > 0 \end{bmatrix}$$

is continuous at x = 0

- **4.** Determine the kind of discontinuity of the function $y = -\frac{2^{1/x} 1}{2^{1/x} + 1}$ at the point x = 0
- 5. Suppose that $f(x) = x^3 3x^2 4x + 12$ and $h(x) = \begin{bmatrix} \frac{f(x)}{x-3} & , & x \neq 3 \\ K & x = 3 \end{bmatrix}$ then
 - (a) find all zeros of 'f'
 - (b) find the value of K that makes 'h' continuous at x = 3
 - (c) using the value of K found in (b) determine whether 'h' is an even function.
- **6.** Draw the graph of the function $f(x) = x \left| x x^2 \right|$, $-1 \le x \le 1$ & discuss the continuity or discontinuity of f in the interval $-1 \le x \le 1$.
- 7. If $f(x) = \frac{\sin 3x + A \sin 2x + B \sin x}{x^5} (x \neq 0)$ is continuous at x = 0, then find A & B. Also find f(0).
- 8. (a) Let f(x + y) = f(x) + f(y) for all x, y & if the function f(x) is continuous at x = 0, then show that f(x) is continuous at all x.
 - (b) If $f(x \cdot y) = f(x)$, f(y) for all x, y and f(x) is continuous at x = 1. Prove that f(x) is continuous for all x except at x = 0. Given $f(1) \neq 0$.
- 9. Examine the continuity at x=0 of the sum function of the infinite series :

$$\frac{x}{x+1}+\frac{x}{\big(x+1\big)\big(2x+1\big)}+\frac{x}{\big(2x+1\big)\big(3x+1\big)}+\dots\dots\infty$$

- 10. Show that: (a) a polynomial of an odd degree has at least one real root
 - (b) a polynomial of an even degree has at least two real roots if it attains at least one value opposite in sign to the coefficient of its highest-degree term.

CON	CEPTUAL SUBJECTIVE EXERCISE	ANSWE	R KEY	EXERCISE-4(A)
1.	continuous every where except at $x = 0$	2.	$a = -1 \ b = 1$	
3.	$a = -3/2, b \neq 0, c = 1/2$	4.	non-removable - finite type	
5.	(a) -2 , 2, 3 (b) $K=5$ (c) even	6.	f is continuous in $-1 \le x \le 1$	
7.	A = -4, $B = 5$, $f(0) = 1$	9.	discontinuous at $x = 0$	

EXERCISE - 4 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

$$\textbf{1} \, . \qquad \text{Given} \ \ f \! \left(x \right) \! = \! \sum_{r=1}^{n} tan \! \left(\frac{x}{2^{r}} \right) \! sec \! \left(\frac{x}{2^{r-1}} \right) \; ; \; r,n \in \! N$$

$$g\left(x\right) = \begin{bmatrix} \lim_{n \to \infty} \frac{\ln\left(f\left(x\right) + \tan\frac{x}{2^{n}}\right) - \left(f\left(x\right) + \tan\frac{x}{2^{n}}\right)^{n} \cdot \left[\sin\left(\tan\frac{x}{2}\right)\right]}{1 + \left(f\left(x\right) + \tan\frac{x}{2^{n}}\right)^{n}} & ; \quad x \neq \pi/4 \end{bmatrix}$$

$$K \qquad \qquad ; \quad x = \pi/4$$

where [] denotes the greatest integer function and the domain of g(x) is $\left(0,\frac{\pi}{2}\right)$. Find the value of k, if possible, so that g(x) is continuous at $x = \pi/4$. Also state the points of discontinuity of g(x) in $\left(0,\pi/4\right)$, if any.

- 3. Discuss the continuity of 'f' in [0,2] where $f(x) = \begin{bmatrix} |4x-5|[x]| & \text{for } x>1\\ [\cos\pi x] & \text{for } x\leq 1 \end{bmatrix}$; where [x] is the greatest integer not greater than x. Also draw the graph
- **4.** Discuss the continuity of the function $f(x) = \lim_{n \to \infty} \frac{\ln(2+x) x^{2n} \sin x}{1 + x^{2n}}$ at x = 1
- $\textbf{5.} \quad \text{Consider the function } g(x) = \begin{bmatrix} \frac{1-a^x + xa^x \ell n\, a}{a^x x^2} & \text{for } x < 0 \\ \\ \frac{2^x a^x x \ell n 2 x \ell n\, a 1}{x^2} & \text{for } x > 0 \end{bmatrix}$ where a > 0.

Find the value of 'a' & 'g(0)' so that the function g(x) is continuous at x = 0.

$$\textbf{6.} \qquad \text{Let } f(x) = \begin{bmatrix} \left(\frac{\pi}{2} - \sin^{-1}\left(1 - \{x\}^2\right)\right) . \sin^{-1}\left(1 - \{x\}\right) \\ \hline \sqrt{2}\left(\{x\} - \{x\}^3\right) & \text{for } x \neq 0 \\ \frac{\pi}{2} & \text{for } x = 0 \end{bmatrix} \quad \text{where } \{x\} \text{ is the fractional part of } x.$$

Consider another function g(x); such that

$$g(x) = \begin{bmatrix} f(x) & \text{for } x \ge 0 \\ 2\sqrt{2} f(x) & \text{for } x \le 0 \end{bmatrix}$$

Discuss the continuity of the functions f(x) & g(x) at x = 0.

$$f(x) = \frac{a^{\sin x} - a^{\tan x}}{\tan x - \sin x} \qquad \text{for } x > 0$$

$$= \frac{\ln(1 + x + x^2) + \ln(1 - x + x^2)}{\sec x - \cos x} \qquad \text{for } x < 0, \text{ if 'f' is continuous at } x = 0, \text{ find 'a'}$$

now if $g(x) = \ell_n \left(2 - \frac{x}{a}\right) \cdot \cot(x - a)$ for $x \neq a$, $a \neq 0$, a > 0. If 'g' is continuous at x = a then show that $g(e^{-1}) = -e$

8. Let [x] denote the greatest integer function & f(x) be defined in a neighbourhood of 2 by

$$f(x) = \begin{bmatrix} \frac{\left(exp\left\{(x+2)\ln 4\right\}\right)^{\frac{[x+1]}{4}} - 16}{4^x - 16}, & x < 2\\ A\frac{1 - \cos(x-2)}{(x-2)\tan(x-2)} & , & x > 2 \end{bmatrix}$$

Find the value of A & f(2) in order that f(x) may be continuous at x = 2.

- **9.** If g:[a, b] onto [a, b] is continuous show that there is some $c \in [a, b]$ such that g(c) = c.
- 10. Let $y_n(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{\left(1+x^2\right)^2} + \dots + \frac{x^2}{\left(1+x^2\right)^{n-1}}$ and $y(x) = \lim_{n \to \infty} y_n(x)$. Discuss the continuity of $y_n(x)$ $(n = 1, 2, 3, \dots, n)$ and y(x) at x = 0

BRAIN STORMING SUBJECTIVE EXERCISE ANSWER K

EXERCISE-4(B)

- $1. \qquad k=0 \ ; \ g(x)=\begin{bmatrix} \ln(\tan x) & \text{if} & 0< x<\frac{\pi}{4} \\ \\ 0 & \text{if} & \frac{\pi}{4}\leq x<\frac{\pi}{2} \end{bmatrix}. \quad \text{Hence g(x) is continuous everywhere.}$
- **2.** gof is discontinuous at x = 0, 1 and -1
- 3. the function 'f' is continuous everywhere in [0,2] except for x = 0, $\frac{1}{2}$, 1 & 2
- 4. discontinuous at x = 1
- 5. $a = \frac{1}{\sqrt{2}}, g(0) = \frac{(\ell_n 2)^2}{8}$
- **6.** $f(0^+) = \frac{\pi}{2}$; $f(0^-) = \frac{\pi}{4\sqrt{2}}$ \Rightarrow 'f' is discontinuous at x = 0; $g(0^+) = g(0^-) = g(0) = \frac{\pi}{2}$ \Rightarrow 'g' is continuous at x = 0
- 7. $a = e^{-1}$
- 8. A = 1; f(2) = 1/2
- **10.** y_n (x) is continuous at x = 0 for all n and y (x) is discontinuous at x = 0

EXERCISE - 05 [A]

JEE-[MAIN]: PREVIOUS YEAR QUESTIONS

If $f(x) = \begin{cases} x & x \in Q \\ -x & x \notin O \end{cases}$, then f is continuous at-1.

[AIEEE 2002]

- (1) Only at zero
- (2) only at 0, 1
- (3) all real numbers
- (4) all rational numbers

If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is-} \\ 0, & x = 0 \end{cases}$

[AIEEE 2003]

(1) discontinuous everywhere

- (2) continuous as well as differentiable for all x
- (3) continuous for all x but not differentiable at x=0
- (4) neither differentiable nor continuous at x = 0
- $\text{Let } f(x) = \frac{1 \tan x}{4x \pi} \,, \; x \neq \, \frac{\pi}{4} \,, \; x \, \in \, \left[\, 0, \, \frac{\pi}{2} \, \right], \; \text{If } f(x) \; \text{is continuous in} \; \left[\, 0, \, \frac{\pi}{2} \, \right], \; \text{then } f\left(\frac{\pi}{4} \, \right) \; \text{is-continuous}$ 3.
- The function $f: R/\{0\} \to R$ given by $f(x) = \frac{1}{x} \frac{2}{e^{2x} 1}$ can be made continuous at x = 0 by defining f(0) as-

(1) 2

(2) -1

(3) 0

- (4) 1
- The values of p and q for which the function $f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} &, & x < 0 \\ \frac{q}{x} &, & x = 0 \\ \frac{\sqrt{x+x^2} \sqrt{x}}{\frac{3}{2}} &, & x > 0 \end{cases}$ is continuous for all x in R, 5.

[AIEEE 2011]

- (1) $p = -\frac{3}{2}$, $q = \frac{1}{2}$ (2) $p = \frac{1}{2}$, $q = \frac{3}{2}$ (3) $p = \frac{1}{2}$, $q = -\frac{3}{2}$ (4) $p = \frac{5}{2}$, $q = \frac{1}{2}$

- Define F(x) as the product of two real functions $f_1(x) = x$, $x \in IR$, and $f_2(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ as follows: 6.

$$F(x) = \begin{cases} f_1(x).f_2(x) & \text{if} \quad x \neq 0 \\ 0, & \text{if} \quad x = 0 \end{cases}$$

[AIEEE 2011]

Statement-1: F(x) is continuous on IR.

Statement-2: $f_1(x)$ and $f_2(x)$ are continuous on IR.

- (1) Statemen-1 is false, statement-2 is true.
- (2) Statemen-1 is true, statement-2 is true; Statement-2 is correct explanation for statement-1.
- (3) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1
- (4) Statement-1 is true, statement-2 is false
- Consider the function, $f(x) = |x 2| + |x 5|, x \in \mathbb{R}$.

Statement-1: f'(4) = 0.

Statement-2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

[AIEEE 2012]

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

PREVIOUS YEARS QUEST	. A	ANSW	ER I	KEY			EXERCISE-5 [A]		
	Que.	1	2	3	4	5	6	7	
	Ans	1	3	3	4	1	4	4	

EXERCISE - 05 [B]

JEE-[ADVANCED]: PREVIOUS YEAR QUESTIONS

Discuss the continuity of the function $f(x) = \begin{cases} \frac{e^{1/(x-1)} - 2}{e^{1/(x-1)} + 2}, & x \neq 1 \\ 1, & x = 1 \end{cases}$ at x = 1. 1.

[REE 2001 (Mains), 3]

For every integer n, let a_n and b_n be real numbers. Let function $f:\mathbb{R}\to\mathbb{R}$ be given by 2.

$$f(x) = \begin{cases} a_n + \sin \pi x, & \text{for} \quad x \in \left[2n, 2n + 1\right] \\ b_n + \cos \pi x, & \text{for} \quad x \in \left(2n - 1, 2n\right), \end{cases} \text{ for all integers } n.$$

If f is continuous, then which of the following holds(s) for all n? [JE (A) $a_{n-1} - b_{n-1} = 0$ (B) $a_n - b_n = 1$ (C) $a_n - b_{n+1} = 1$ (D) $a_{n-1} - b_n = -1$

[JEE 2012, 4]

(A)
$$a_{n-1} - b_{n-1} = 0$$

(B)
$$a_n - b_n = 1$$

(C)
$$a_n - b_{n+1} = 1$$

(D)
$$a_{n-1} - b_n = -1$$

PREVIOUS YEARS QUESTIONS

KEY

EXERCISE-5

- Discontinuous at x = 1; $f(1^+) = 1$ and $f(1^-) = -1$
- B,D